
DSD UNIT 2 NOTES

UNIT-II
Boolean algebra and Logic Gates

BOOLEAN OPERATIONS AND EXPRESSIONS

Variable, complement, and literal are terms used in Boolean algebra. A

variable is a symbol used to represent a logical quantity. Any single variable

can have a 1 or a 0 value. The complement is the inverse of a variable and is

indicated by a bar over variable (overbar). For example, the complement of

the variable A is A. If A = 1, then A = 0. If A = 0, then A = 1. The

complement of the variable A is read as "not A" or "A bar." Sometimes a

prime symbol rather than an overbar is used to denote the complement of a

variable; for example, B' indicates the complement of B. A literal is a

variable or the complement of a variable.

Boolean Addition

Recall from part 3 that Boolean addition is equivalent to the OR

operation. In Boolean algebra, a sum term is a sum of literals. In logic

circuits, a sum term is produced by an OR operation with no AND operations

involved. Some examples of sum terms are A + B, A + B, A +

B + C, and A + B + C + D.

A sum term is equal to 1 when one or more of the literals in the term are 1. A

sum term is equal to 0 only if each of the literals is 0.

Example

Determine the values of A, B, C, and D that make the sum term

A + B + C + D equal to 0.

Boolean Multiplication

Also recall from part 3 that Boolean multiplication is equivalent to the AND

operation. In Boolean algebra, a product term is the product of literals. In

DSD UNIT 2 NOTES

logic circuits, a product term is produced by an AND operation with no OR

operations involved. Some examples of product terms are AB, AB, ABC,

and ABCD.

A product term is equal to 1 only if each of the literals in the term is 1. A

product term is equal to 0 when one or more of the literals are 0.

Example

Determine the values of A, B, C, and D that make the product term ABCD

equal to 1.

LAWS AND RULES OF BOOLEAN ALGEBRA

■ Laws of Boolean Algebra

The basic laws of Boolean algebra-the commutative laws for addition and

multiplication, the associative laws for addition and multiplication, and the

distributive law-are the same as in ordinary algebra.

Commutative Laws

►The commutative law of addition for two variables is written as

A+B = B+A

This law states that the order in which the variables are ORed makes no

difference. Remember, in Boolean algebra as applied to logic circuits,

addition and the OR operation are the same. Fig.(4-1) illustrates the

commutative law as applied to the OR gate and shows that it doesn't matter

to which input each variable is applied. (The symbol ≡ means "equivalent

to.").

Fig.(4-1) Application of commutative law of addition.

DSD UNIT 2 NOTES

►The commutative law of multiplication for two variables

is A.B = B.A

This law states that the order in which the variables are ANDed makes no

difference. Fig.(4-2), il1ustrates this law as applied to the AND gate.

Fig.(4-2) Application of commutative law of multiplication.

Associative Laws :

►The associative law of addition is written as follows for three variables:

A + (B + C) = (A + B) + C

This law states that when ORing more than two variables, the result is the

same regardless of the grouping of the variables. Fig.(4-3), illustrates this

law as applied to 2-input OR gates.

Fig.(4-3) Application of associative law of addition.

►The associative law of multiplication is written as follows for three

variables:

A(BC) = (AB)C

This law states that it makes no difference in what order the variables are

grouped when ANDing more than two variables. Fig.(4-4) illustrates this law

as applied to 2-input AND gates.

DSD UNIT 2 NOTES

Fig.(4-4) Application of associative law of multiplication.

Distributive Law:

►The distributive law is written for three variables as follows:

A(B + C) = AB + AC

This law states that ORing two or more variables and then ANDing the result

with a single variable is equivalent to ANDing the single variable with each

of the two or more variables and then ORing the products. The distributive

law also expresses the process of factoring in which the common variable A

is factored out of the product terms, for example,

AB + AC = A(B + C).

Fig.(4-5) illustrates the distributive law in terms of gate

implementation.

Fig.(4-5) Application of distributive law.

DSD UNIT 2 NOTES

■ Rules of Boolean Algebra

Table 4-1 lists 12 basic rules that are useful in manipulating and simplifying

Boolean expressions. Rules 1 through 9 will be viewed in terms of their

application to logic gates. Rules 10 through 12 will be derived in terms of

the simpler rules and the laws previously discussed.

Table 4-1 Basic rules of Boolean algebra.

Rule 1. A + 0 = A

A variable ORed with 0 is always equal to the variable. If the input variable

A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is

0, which is also equal to A. This rule is illustrated in Fig.(4-6), where the

lower input is fixed at 0.

Fig.(4-6)

DSD UNIT 2 NOTES

Rule 2. A + 1 = 1

A variable ORed with 1 is always equal to 1. A 1 on an input to an OR gate

produces a 1 on the output, regardless of the value of the variable on the

other input. This rule is illustrated in Fig.(4-7), where the lower input is

fixed at 1.

Fig.(4-7)

Rule 3. A . 0 = 0

A variable ANDed with 0 is always equal to 0. Any time one input to an

AND gate is 0, the output is 0, regardless of the value of the variable on the

other input. This rule is illustrated in Fig.(4-8), where the lower input is

fixed at 0.

Fig.(4-8)

Rule 4. A . 1 = A

A variable ANDed with 1 is always equal to the variable. If A is 0 the output

of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both

inputs are now 1s. This rule is shown in Fig.(4-9), where the lower input is

fixed at 1.

Fig.(4-9)

DSD UNIT 2 NOTES

Rule 5. A + A = A

A variable ORed with itself is always equal to the variable. If A is 0, then 0

+ 0 = 0; and if A is 1, then 1 + 1 = 1. This is shown in Fig.(4-10), where both

inputs are the same variable.

Fig.(4-10)

Rule 6. A + A = 1

A variable ORed with its complement is always equal to 1. If A is 0, then 0 +

0 = 0 + 1 = 1. If A is l, then 1 + 1 = 1+ 0 = 1. See Fig.(4-11), where one

input is the complement of the other.

Fig.(4-11)

Rule 7. A . A = A

A variable ANDed with itself is always equal to the variable. If A = 0,

then 0.0 = 0; and if A = 1. then 1.1 = 1. Fig.(4-12) illustrates this rule.

Fig.(4-12)

DSD UNIT 2 NOTES

Rule 8. A . A = 0

A variable ANDed with its complement is always equal to 0. Either A or A

will always be 0: and when a 0 is applied to the input of an AND gate. the

output will be 0 also. Fig.(4-13) illustrates this rule.

Fig.(4-13)

Rule 9 A = A

The double complement of a variable is always equal to the variable. If you

start with the variable A and complement (invert) it once, you get A. If you

then take A and complement (invert) it, you get A, which is the original

variable. This rule is shown in Fig.(4-14) using inverters.

Fig.(4-14)

Rule 10. A + AB = A

This rule can be proved by applying the distributive law, rule 2, and rule 4

as follows:

A + AB = A(1 + B) Factoring (distributive law)

= A . l Rule 2: (1 + B) = 1

= A Rule 4: A . 1 = A

The proof is shown in Table 4-2, which shows the truth table and the

resulting logic circuit simplification.

DSD UNIT 2 NOTES

Table 4-2

Rule 11. A + AB = A + B

This rule can be proved as follows:

A + AB = (A + AB) + AB Rule 10: A = A + AB

= (AA + AB) + AB Rule 7: A = AA

=AA +AB +AA +AB Rule 8: adding AA = 0

= (A + A)(A + B) Factoring

= 1. (A + B) Rule 6: A + A = 1

=A + B Rule 4: drop the 1

The proof is shown in Table 4-3, which shows the truth table and the

resulting logic circuit simplification.

Table 4-3

DSD UNIT 2 NOTES

Rule 12. (A + B)(A + C) = A + BC

This rule can be proved as follows:

(A + B)(A + C) = AA + AC + AB + BC Distributive law

= A + AC + AB + BC Rule 7: AA = A

= A(1 + C) + AB + BC Rule 2: 1 + C = 1

= A. 1 + AB + BC Factoring (distributive law)

= A(1 + B) + BC Rule 2: 1 + B = 1

= A. 1 + BC Rule 4: A . 1 = A

= A + BC

The proof is shown in Table 4-4, which shows the truth table and the

resulting logic circuit

simplification.

Table 4-4

DSD UNIT 2 NOTES

DEMORGAN'S THEOREMS

DeMorgan, a mathematician who knew Boole, proposed two theorems that

are an important part of Boolean algebra. In practical terms. DeMorgan's

theorems provide mathematical verification of the equivalency of the NAND

and negative-OR gates and the equivalency of the NOR and negative-AND

gates, which were discussed in part 3.

One of DeMorgan's theorems is stated as follows:

The complement of a product of variables is equal to the sum of the

complements of the variables,

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR

of the complements of the individual variables.

The formula for expressing this theorem for two variables is

XY = X + Y

DeMorgan's second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the

complements of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND

of the complements of the individual variables,

The formula for expressing this theorem for two variables is

X + Y = X Y

Fig.(4-15) shows the gate equivalencies and truth tables for the two

equations above.

DSD UNIT 2 NOTES

Fig.(4-15) Gate equivalencies and the corresponding truth tables

that illustrate DeMorgan's theorems.

As stated, DeMorgan's theorems also apply to expressions in which there are

more than two variables. The following examples illustrate the application of

DeMorgan's theorems to 3-variable and 4-variable expressions.

Example

Apply DeMorgan's theorems to the expressions XYZ and X + Y + z.

XYZ = X + Y + Z

X + y + Z = X Y Z

Example

Apply DeMorgan's theorems to the expressions WXYZ and W + X + y + z.

WXYZ = W + X + y + Z

W + X + y + Z = W X Y Z

DSD UNIT 2 NOTES

Applying DeMorgan's Theorems

The following procedure illustrates the application of DeMorgan's theorems

and Boolean algebra to the specific expression

Step l. Identify the terms to which you can apply DeMorgan's theorems, and

think of each term as a single variable. Let A + BC = X and D(E + F) = Y.

Step 2. Since X + Y = X Y,

 = (A + BC) (D(E + F))

Step 3. Use rule 9 (A = A) to cancel the double bars over the left term (this is

not part of DeMorgan's theorem).

(A + BC) (D(E + F)) = (A + BC)(D(E + F))

Step 4. Applying DeMorgan's theorem to the second term,

(A + BC)(D(E + F)) = (A + BC)(D + (E + F))

Step 5. Use rule 9 (A = A) to cancel the double bars over the E + F part of

the term.

(A + BC)(D + E + F) = (A + BC)(D + E + F)

Example

Apply DeMorgan's theorems to each of the following expressions:

(a) (A + B + C)D (b) ABC + DEF (c) AB + CD + EF

DSD UNIT 2 NOTES

Example

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a

starting point, use DeMorgan's theorems and any other rules or laws that are

applicable to develop an expression for the exclusive-NOR gate.

BOOLEAN ANALYSIS OF LOGIC CIRCUITS

Boolean algebra provides a concise way to express the operation of a logic

circuit formed by a combination of logic gates so that the output can be

determined for various combinations of input values.

Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given logic circuit, begin at the left-

most inputs and work toward the final output, writing the expression for each

gate. For the example circuit in Fig.(4-16), the Boolean expression is

determined as follows:

The expression for the left-most AND gate with inputs C and D is CD.

The output of the left-most AND gate is one of the inputs to the OR

gate and B is the other input. Therefore, the expression for the OR

gate is B + CD.

The output of the OR gate is one of the inputs to the right-most AND

gate and A is the other input. Therefore, the expression for this AND

gate is A(B + CD), which is the final output expression for the entire

circuit.

DSD UNIT 2 NOTES

Fig.(4-16) A logic circuit showing the development of the Boolean

expression for the output.

Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been

determined, a truth table that shows the output for all possible values of the

input variables can be developed. The procedure requires that you evaluate

the Boolean expression for all possible combinations of values for the input

variables. In the case of the circuit in Fig.(4-16), there are four input

variables (A, B, C, and D) and therefore sixteen (2
4
 = 16) combinations of

values are possible.

Putting the Results in Truth Table format

The first step is to list the sixteen input variable combinations of 1s

and 0s in a binary sequence as shown in Table 4-5. Next, place a 1 in the

output column for each combination of input variables that was determined

in the evaluation. Finally, place a 0 in the output column for all other

combinations of input variables. These results are shown in the truth table in

Table 4-5.

DSD UNIT 2 NOTES

Table 4-5

SIMPLIFICATION USING BOOLEAN ALGEBRA

A simplified Boolean expression uses the fewest gates possible to

implement a given expression.

Example

Using Boolean algebra techniques, simplify this expression:

AB + A(B + C) + B(B + C)

Solution

Step 1: Apply the distributive law to the second and third terms in the

expression, as follows:

AB + AB + AC + BB + BC

Step 2: Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC

Step 4: Apply rule 10 (B + BC = B) to the last two terms.

DSD UNIT 2 NOTES

AB + AC + B

Step 5: Apply rule 10 (AB + B = B) to the first and third terms.

B+AC

At this point the expression is simplified as much as possible.

Fig.(4-17) Gate circuits for example above.

Example

Simplify the Boolean expressions:

1- AB + A(B + C) + B(B + C).

2- [AB(C + BD) + A B]C

3- ABC + ABC + A B C + ABC + ABC

DSD UNIT 2 NOTES

Standard and Canonical Forms:

STANDARD FORMS OF BOOLEAN EXPRESSIONS

All Boolean expressions, regardless of their form, can be converted into

either of two standard forms: the sum-of-products form or the product-of-

sums form. Standardization makes the evaluation, simplification, and

implementation of Boolean expressions much more systematic and easier.

The Sum-of-Products (SOP) Form

When two or more product terms are summed by Boolean addition,

the resulting expression is a sum-of-products (SOP). Some examples are:

AB + ABC

ABC + CDE + BCD

AB + BCD + AC

Also, an SOP expression can contain a single-variable term, as in

A + ABC + BCD.

In an SOP expression a single overbar cannot extend over more than

one variable.

Example

Convert each of the following Boolean expressions to SOP form:

(a) AB + B(CD + EF)

(b) (A + B)(B + C + D)

(c) (A + B) + C

DSD UNIT 2 NOTES

Fig.(4-18) Implementation of the SOP expression AB + BCD + AC.

Fig.(4-19) This NAND/NAND implementation is equivalent

to the AND/OR in figure above.

The Standard SOP Form

So far, you have seen SOP expressions in which some of the product

terms do not contain all of the variables in the domain of the expression. For

example, the expression ABC + ABD + ABCD has a domain made up of the

variables A, B, C. and D. However, notice that the complete set of variables

in the domain is not represented in the first two terms of the expression; that

is, D or D is missing from the first term and C or C is missing from the

second term.

A standard SOP expression is one in which all the variables in the domain

appear in each product term in the expression. For example, ABCD + ABCD

+ ABCD is a standard SOP expression.

DSD UNIT 2 NOTES

Converting Product Terms to Standard SOP:

Each product term in an SOP expression that does not contain all the

variables in the domain can be expanded to standard SOP to include all

variables in the domain and their complements. As stated in the following

steps, a nonstandard SOP expression is converted into standard form using

Boolean algebra rule 6 (A + A = 1) from Table 4-1: A variable added to its

complement equals 1.

Step 1. Multiply each nonstandard product term by a term made up of the

sum of a missing variable and its complement. This results in two product

terms. As you know, you can multiply anything by 1 without changing its

value.

Step 2. Repeat Step 1 until all resulting product terms contain all variables in

the domain in either complemented or uncomplemented form. In converting

a product term to standard form, the number of product terms is doubled for

each missing variable.

Example

Convert the following Boolean expression into standard SOP

form: ABC + AB + ABCD

Solution

The domain of this SOP expression A, B, C, D. Take one term at a time. The

first term, ABC, is missing variable D or D, so multiply the first term by (D

+ D) as follows:

ABC = ABC(D + D) = ABCD + ABCD

In this case, two standard product terms are the result.

The second term, AB, is missing variables C or C and D or D, so first

multiply the second term by C + C as follows:

AB = AB(C + C) = ABC + ABC

DSD UNIT 2 NOTES

The two resulting terms are missing variable D or D, so multiply both terms

by (D + D) as follows:

ABC(D + D) + ABC(D + D)

= A BCD + ABCD + ABCD + ABCD

In this case, four standard product terms are the result.

The third term, ABCD, is already in standard form. The complete standard

SOP form of the original expression is as follows:

ABC + AB + ABCD = ABCD + ABCD + A BCD + ABCD + ABCD +

ABCD + ABCD

The Product-of-Sums (POS) Form

A sum term was defined before as a term consisting of the sum

(Boolean addition) of literals (variables or their complements). When two or

more sum terms are multiplied, the resulting expression is a product-of-sums

(POS). Some examples are

(A + B)(A + B + C)

(A + B + C)(C + D + E)(B + C + D)

(A + B)(A + B + C)(A + C)

A POS expression can contain a single-variable term, as in

A(A + B + C)(B + C + D).

In a POS expression, a single overbar cannot extend over more than one

variable; however, more than one variable in a term can have an overbar. For

example, a POS expression can have the term A + B + C but not A + B + C.

Implementation of a POS Expression simply requires ANDing the outputs of

two or more OR gates. A sum term is produced by an OR operation and the

product of two or more sum terms is produced by an AND operation. Fig.(4-

DSD UNIT 2 NOTES

20) shows for the expression (A + B)(B + C + D)(A + C). The output X of

the AND gate equals the POS expression.

Fig.(4-20)

The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do

not contain all of the variables in the domain of the expression. For example,

the expression

(A + B + C) (A + B + D) (A + B + C + D)

has a domain made up of the variables A, B, C, and D. Notice that the

complete set of variables in the domain is not represented in e first two terms

of the expression; that is, D or D is missing from the first term and C or C is

missing from the second term.

A standard POS expression is one in which all the variables in the domain

appear in each sum term in the expression. For example,

(A + B + C + D)(A + B + C + D)(A + B + C + D)

is a standard POS expression. Any nonstandard POS expression (referred to

simply as POS) can be converted to the standard form using Boolean

algebra.

Converting a Sum Term to Standard POS

Each sum term in a POS expression that does not contain all the variables in

the domain can be expanded to standard form to include all variables in the

domain and their complements. As stated in the following steps, a

DSD UNIT 2 NOTES

nonstandard POS expression is converted into standard form using Boolean

algebra rule 8 (A A = 0) from Table 4-1:

Step 1. Add to each nonstandard product term a term made up of the product

of the missing variable and its complement. This results in two sum terms.

As you know, you can add 0 to anything without changing its value.

Step 2. Apply rule 12 from Table 4-1: A + BC = (A + B)(A + C)

Step 3. Repeat Step 1 until all resulting sum terms contain all variables in the

domain in either complemented or noncomplemented form.

Example

Convert the following Boolean expression into standard POS

form: (A + B + C)(B + C + D)(A + B + C + D)

Solution

The domain of this POS expression is A, B, C, D. Take one term at a time.

The first term, A + B + C, is missing variable D or D, so add DD and apply

rule 12 as follows:

A + B + C = A + B + C + DD = (A + B + C + D)(A + B + C + D)

The second term, B + C + D, is missing variable A or A, so add AA and

apply rule 12 as follows:

B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D)

The third term, A + B + C + D, is already in standard form. The standard

POS form of the original expression is as follows:

(A + B + C)(B + C + D)(A + B + C + D) = (A + B + C + D)(A + B + C +

D) (A + B + C + D)(A + B + C + D) (A + B + C + D)

DSD UNIT 2 NOTES

Examples:-

CANONICAL FORMS OF BOOLEAN EXPRESSIONS

n variables can be combined to form 2
n
 minterms.

Note that each maxterm is the complement of its corresponding

minterm and vice versa.

DSD UNIT 2 NOTES

For example the function F

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

F =

z + x

z + x y z

x y y

F = m1 + m4 + m7

Any Boolean function can be expressed as a sum of minterms (sum of

products SOP) or product of maxterms (product of sums POS).

F = x y z + x y z + x y z + x y z + x y z

The complement of F = F = F

F = (x + y + z) (x + y + z) (x + y + z) (x + y + z) (x + y +

z) F = M0 M2 M3 M5 M6

Example

Express the Boolean function F = A + BC in a sum of minterms (SOP).

Solution

The term A is missing two variables because the domain of F is (A, B, C)

A = A(B + B) = AB + AB because B + B = 1

DSD UNIT 2 NOTES

BC missing A, so

BC(A + A) = ABC + ABC

AB(C + C) = ABC + ABC

AB(C + C) = ABC + ABC

F = ABC + ABC + ABC + ABC + ABC + ABC

Because A + A = A

F = ABC + ABC + ABC + ABC + ABC

F = m7 + m6 + m5 + m4 + m1

In short notation

F(A, B, C) = ∑(1, 4, 5, 6, 7)

F(A, B, C) = ∑(0, 2, 3)

The complement of a function expressed as the sum of minterms equal

to the sum of minterms missing from the original function.

Truth table for F = A +

BC

 A B C B BC F

0 0 0 0 1 0 0

1 0 0 1 1 1 1

2 0 1 0 0 0 0

3 0 1 1 0 0 0

4 1 0 0 1 0 1

5 1 0 1 1 1 1

6 1 1 0 0 0 1

7 1 1 1 0 0 1

DSD UNIT 2 NOTES

Example

Express F = xy + xz in a product of maxterms form.

Solution

F = xy + xz = (xy + x)(xy + z) = (x + x)(y + x)(x + z)(y + z)

remember x + x = 1

F = (y + x)(x + z)(y + z)

F = (x + y + zz)(x + yy + z)(xx + y + z)

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z)(x + y +z)(x + y + z)
========== ------------------ ---------------- ==========

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z)

F = M4 M5 M0 M2

F(x, y, z) = ∏(0, 2, 4, 5)

F(x, y, z) = ∏(1, 3, 6, 7)

The complement of a function expressed as the product of maxterms

equal to the product of maxterms missing from the original function.

To convert from one canonical form to another, interchange the symbols ∑,

∏ and list those numbers missing from the original form.

F = M4 M5 M0 M2 = m1 + m3 + m6 + m7

F(x, y, z) = ∏(0, 2, 4, 5) = ∑(1, 3, 6, 7)

DSD UNIT 2 NOTES

Example

Develop a truth table for the standard SOP expression ABC + ABC + ABC.

Converting POS Expressions to Truth Table Format

Reca11 that a POS expression is equal to 0 only if at least one of the

sum terms is equal to 0. To construct a truth table from a POS expression,

list all the possible combinations of binary values of the variables just as was

done for the SOP expression. Next, convert the POS expression to standard

form if it is not already. Finally, place a 0 in the output column (X) for each

binary value that makes the expression a 0 and place a 1 for all the remaining

binary values. This procedure is illustrated in Example below:

Example

Determine the truth table for the following standard POS expression:

DSD UNIT 2 NOTES

Solution

There are three variables in the domain and the eight possible binary

values are listed in the left three columns of. The binary values that make the

sum terms in the expression equal to 0 are A+ B + C: 000; A + B + C: 010:

A + B + C: 011; A + B + C: 10l; and A + B + C: 110. For each of these

binary values, place a 0 in the output column as shown in the table. For each

of the remaining binary combinations, place a 1 in the output column.

DSD UNIT 2 NOTES

KARNAUGH MAP MINIMIZATION

A Karnaugh map provides a systematic method for simplifying Boolean

expressions and, if properly used, will produce the simplest SOP or POS

expression possible, known as the minimum expression. As you have seen,

the effectiveness of algebraic simplification depends on your familiarity with

all the laws, rules, and theorems of Boolean algebra and on your ability to

apply them. The Karnaugh map, on the other hand, provides a "cookbook"

method for simplification.

A Karnaugh map is similar to a truth table because it presents all of the

possible values of input variables and the resulting output for each value.

Instead of being organized into columns and rows like a truth table, the

Karnaugh map is an array of cells in which each cell represents a binary

value of the input variables. The cells are arranged in a way so that

simplification of a given expression is simply a matter of properly grouping

the cells. Karnaugh maps can be used for expressions with two, three, four.

and five variables. Another method, called the Quine-McClusky method can

be used for higher numbers of variables.

The number of cells in a Karnaugh map is equal to the total number of

possible input variable combinations as is the number of rows in a truth table.

For three variables, the number of cells is 2
3
 = 8. For four variables, the

number of cells is 2
4
 = 16.

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells. as shown in Fig.(5-

1)(a). In this case, A, B, and C are used for the variables although other

letters could be used. Binary values of A and B are along the left side (notice

DSD UNIT 2 NOTES

the sequence) and the values of C are across the top. The value of a given cell

is the binary values of A and B at the left in the same row combined with the

value of C at the top in the same column. For example, the cell in the upper

left corner has a binary value of 000 and the cell in the lower right corner has

a binary value of 101. Fig.(5-1)(b) shows the standard product terms that are

represented by each cell in the Karnaugh map.

(a) (b) Fig.(5-1) A 3-variable Karnaugh

map showing product terms.

The 4-Variable Karnaugh Map

The 4-variable Karnaugh map is an array of sixteen cells, as shown in Fig.(5-

2)(a). Binary values of A and B are along the left side and the values of C

and D are across the top. The value of a given cell is the binary values of A

and B at the left in the same row combined with the binary values of C and D

at the top in the same column. For example, the cell in the upper right corner

has a binary value of 0010 and the cell in the lower right corner has a

DSD UNIT 2 NOTES

binary value of 1010. Fig.(5-2)(b) shows the standard product terms that are

represented by each cell in the 4-variable Karnaugh map.

(a) (b)

Fig.(5-2) A 4-variable Karnaugh map.

Cell Adjacency

The cells in a Karnaugh map are arranged so that there is only a single-

variable change between adjacent cells. Adjacency is defined by a single-

variable change. In the 3-variable map the 010 cell is adjacent to the 000 cell,

the 011 cell, and the 110 cell. The 010 cell is not adjacent to the 001 cell, the

111 cell, the 100 cell, or the 101 cell.

Fig.(5-3) Adjacent cells on a Karnaugh map are those that differ by only one

variable. Arrows point between adjacent cells.

DSD UNIT 2 NOTES

KARNAUGH MAP SOP MINIMIZATION

For an SOP expression in standard form, a 1 is placed on the Karnaugh map

for each product term in the expression. Each 1 is placed in a cell

corresponding to the value of a product term. For example, for the product

term ABC, a 1 goes in the 10l cell on a 3-variable map.

Example

Map the following standard SOP expression on a Karnaugh map:

see Fig.(5-4).

Example

Map the following standard SOP expression on a Karnaugh map:

See Fig.(5-5).

DSD UNIT 2 NOTES

Example

Map the following SOP expression on a Karnaugh map:

Solution

The SOP expression is obviously not in standard form because each product

term does not have three variables. The first term is missing two variables,

the second term is missing one variable, and the third term is standard. First

expand the terms numerically as follows:

Example

Map the following SOP expression on a Karnaugh map:

Solution

The SOP expression is obviously not in standard form because each product

term does not have four variables.

DSD UNIT 2 NOTES

Map each of the resulting binary values by placing a 1 in the appropriate cell

of the 4- variable Karnaugh map.

Karnaugh Map Simplification of SOP Expressions

Grouping the 1s, you can group 1s on the Karnaugh map according to the

following rules by enclosing those adjacent cells containing 1s. The goal is to

maximize the size of the

groups and to minimize the number of groups.

A group must contain either 1, 2, 4, 8, or 16 cells, which are all

powers of two. In the case of a 3-variable map, 2
3
 = 8 cells is the

maximum group.

Each cell in a group must be adjacent to one or more cells in that same

group.

Always include the largest possible number of 1s in a group in

accordance with rule 1.

Each 1 on the map must be included in at least one group. The 1s

already in a group can be included in another group as long as the

overlapping groups include noncommon 1s.

Example:

Group the 1s in each of the Karnaugh maps in Fig.(5-6).

Fig.(5-6)

DSD UNIT 2 NOTES

Solution:

The groupings are shown in Fig.(5-7). In some cases, there may be more than

one way to group the 1s to form maximum groupings.

Fig.(5-7)

Determine the minimum product term for each group.

a. For a 3-variable map:

(1) A l-cell group yields a 3-variable product term

(2) A 2-cell group yields a 2-variable product term

(3) A 4-cell group yields a 1-variable term

(4) An 8-cell group yields a value of 1 for the expression

b. For a 4-variable map:

(1) A 1-cell group yields a 4-variable product term

(2) A 2-cell group yields a 3-variable product term

(3) A 4-cell group yields a 2-variable product term

(4) An 8-cell group yields a 1-variable term

(5) A 16-cell group yields a value of 1 for the expression

Example:

Determine the product terms for each of the Karnaugh maps in Fig.(5-7) and

write the resulting minimum SOP expression.

Fig.(5-8)

DSD UNIT 2 NOTES

Solution:

The resulting minimum product term for each group is shown in Fig.(5-8).

The minimum SOP expressions for each of the Karnaugh maps in the figure

are:

(a)AB+BC+ABC (C) AB + AC + ABD

(b) B + A C + AC (d) D + ABC + BC

Example: Use a Karnaugh map to minimize the following standard SOP

expression:

ABC + ABC + ABC + ABC + ABC

Example: Use a Karnaugh map to minimize the following SOP expression:

"Don't Care" Conditions

Sometimes a situation arises in which some input variable combinations are

not allowed. For example, recall that in the BCD code there are six invalid

combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these

unallowed states will never occur in an application involving the BCD code,

they can be treated as "don't care" terms with respect to their effect on the

output. That is, for these "don't care" terms either a 1 or a 0 may be assigned

to the output: it really does not matter since they will never occur.

The "don't care" terms can be used to advantage on the Karnaugh map.

Fig.(5-9) shows that for each "don't care" term, an X is placed in the cell.

When grouping the 1 s, the Xs can be treated as 1s to make a larger grouping

or as 0s if they cannot be used to advantage. The larger a group, the simpler

the resulting term will be.

The truth table in Fig.(5-9)(a) describes a logic function that has a 1 output

only when the BCD code for 7,8, or 9 is present on the inputs. If the "don't

cares" are used as 1s, the resulting expression for the function is A + BCD,

as indicated in part (b). If the "don't cares" are not used as 1s, the resulting

DSD UNIT 2 NOTES

expression is ABC + ABCD: so you can see the advantage of

using "don't care" terms to get the simplest expression.

Fig.(5-9)

KARNAUGH MAP POS MINIMIZATION

In this section, we will focus on POS expressions. The

approaches are much the same except that with POS expressions,

0s representing the standard sum terms are placed on the

Karnaugh map instead of 1s.

For a POS expression in standard form, a 0 is placed on the

Karnaugh map for each sum term in the expression. Each 0 is

placed in a cell corresponding to the value of a sum term. For

example, for the sum term A + B + C, a 0 goes in the 0 1 0 cell

DSD UNIT 2 NOTES

on a 3-variable map.

When a POS expression is completely mapped, there will be a

number of 0s on the Karnaugh map equal to the number of sum

terms in the standard POS expression. The cells that do not have

a 0 are the cells for which the expression is 1. Usually, when

working with POS expressions, the 1s are left off. The following

steps and the illustration in Fig.(5-10) show the mapping process.

Step 1. Determine the binary value of each sum term in the

standard POS expression. This is the binary value that makes the

term equal to 0.

Step 2. As each sum term is evaluated, place a 0 on the Karnaugh

map in the corresponding cell.

Fig.(5-10)

Example of mapping a standard POS expression.

DSD UNIT 2 NOTES

Example:
Map the following standard POS expression on a Karnaugh map:

Solution:

DSD UNIT 2 NOTES

Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is basically the same as for an

SOP expression except that you group 0s to produce minimum sum terms

instead of grouping 1s to produce minimum product terms. The rules for

grouping the 0s are the same as those for grouping the 1s that you learned

before.

Example:

Use a Karnaugh map to minimize the following standard POS expression:

Also, derive the equivalent SOP expression.

Solution:

Example: Use a Karnaugh map to minimize the following POS expression:

Example: Using a Karnaugh map, convert the following standard POS

expression into a minimum POS expression, a standard SOP expression, and

DSD UNIT 2 NOTES

a minimum SOP expression.

DSD UNIT 2 NOTES

Implimentation of logical circuit using NAND and NOR gates:

1- AND-OR Logic

Fig.(6-1)(a) shows an AND-OR circuit consisting of two 2-input AND gates

and one 2-input OR gate; Fig.(6-1)(b) is the ANSI standard rectangular outline

symbol. The Boolean expressions for the AND gate outputs and the resulting

SOP expression for the output X are shown in the diagram. In general, all AND-

OR circuit can have any number of AND gates each with any number of inputs.

The truth table for a 4-input AND-OR logic circuit is shown in Table 6-1. The

intermediate AND gate outputs (AB and CD columns) are also shown in the

table.

(a) Logic diagram (b) ANSI standard rectangular outline symbol.

DSD UNIT 2 NOTES

Fig.(6-1)

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input

A and input B are HIGH (1) or both input C and input D are HIGH (1).

2-AND-OR-Invert Logic

When the output of an AND-OR circuit is complemented (inverted), it results in

an AND-OR-Invert circuit. Recall that AND-OR logic directly implements SOP

expressions. POS expressions can be implemented with AND-OR-Invert logic.

This is illustrated as follows, starting with a POS expression and developing the

corresponding AND-OR-Invert expression.

Table 6-1

Fig.(6-2)

DSD UNIT 2 NOTES

For a 4-input AND-OR-Invert logic circuit, the output X is LOW (0) if

both input A and input B are HIGH (1) or both input C and input D are

HIGH (1).

3-Exclusive-OR logic

The exclusive-OR gate was introduced before. Although, because of its

importance, this circuit is considered a type of logic gate with its own unique

symbol it is actually a combination of two AND gates, one OR gate, and two

inverters, as shown in Fig.(6-3)(a). The two standard logic symbols are shown in

parts (b) and (c).

Fig.(6-3)

The output expression for the circuit in Fig.(6-3) is

Can be written as

Table 6-2 Truth table for an exclusive-OR.

DSD UNIT 2 NOTES

4- Exclusive-NOR Logic

As you know, the complement of the exclusive-OR function is the

exclusive-NOR, whichis derived as follows:

X = AB + AB = (AB) (AB) = (A + B)(A + B) = AB + AB

Notice that the output X is HIGH only when the two inputs, A and B, are at the

same level.

The exclusive-NOR can be implemented by simply inverting the output of an

exclusive- OR, as shown in Fig(6-4)(a), or by directly implementing the

expression AB + AB, as shown in part (b).

Fig.(6-4)

Example

Develop a logic circuit with four input variables that will only produce a 1
output when exactly three input variables are 1s. Fig.(6-5) shows the circuit.

Fig.(6-5)

DSD UNIT 2 NOTES

Example

Reduce the combinational logic circuit in Fig.(6-6) to a minimum form.

Fig.(6-6)

Solution

The expression for the output of the circuit is

X = (A B C) C + ABC + D

Applying DeMorgan's theorem and Boolean algebra,

The simplified circuit is a 4-input OR gate as shown in Fig.(6-7).

Fig.(6-7)

DSD UNIT 2 NOTES

THE UNIVERSAL PROPERTY OF NAND AND NOR GATES

1- The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used to produce the NOT,

the AND, the OR, and the NOR functions. An inverter can be made from a

NAND gate by connecting all of the inputs together and creating, in effect, a

single input, as shown in Fig.(6-8)(a) for a 2-input gate. An AND function can

be generated by the use of NAND gates alone, as shown in Fig.(6-8)(b). An OR

function can be produced with only NAND gates, as illustrated in part (c).

Finally. a NOR function is produced as shown in part (d).

Fig.(6-9)

DSD UNIT 2 NOTES

2- The NOR Gate as a Universal Logic Element

Like the NAND gate, the NOR gate can be used to produce the NOT, AND. OR

and NAND functions. A NOT circuit, or inverter, can be made from a NOR gate

by connecting all of the inputs together to effectively create a single input, as

shown in Fig.(6-10)(a) with a 2-input example. Also, an OR gate can be

produced from NOR gates, as illustrated in Fig.(6-10)(b). An AND gate can be

constructed by the use of NOR gates, as shown in Fig.(6-10)(c). In this case the

NOR gates G 1 and G 2 are used as inverters, and the final output is derived by

the use of DeMorgan's theorem as follows:

X=A+B=AB

Fig.(6-10)(d) shows how NOR gates are used t0 form a NAND function.

Fig.(6-10)

DSD UNIT 2 NOTES

Example

Example

1- Write the output expression for each circuit as it appears in Fig.(6-

11) and then change each circuit to an equivalent AND-OR

configuration.

2- Develop the truth table for circuit in Fig.(6-11)(a-b).

3- Show that an exclusive-NOR circuit produces a POS output.

DSD UNIT 2 NOTES

Integrated Circuits “IC”

- It’s a small silicon semiconductor, called a chip, containing the electronic components for the

digital gates. The gates are interconnected inside the chip to form the required circuit.

Levels of Integration

- Small-scale Integration (SSI): contains several independent gates in a single package. The

number of gates is usually fewer than 10.

- Medium-scale Integration (MSI): have a complexity between 10 and 100 gates in a single

package. They perform specific digital operations such as decoders, adders, and multiplexers.

- Large-scale Integration (LSI): contains between 100 and 1000s gates in a single package.

The number of gates is usually fewer than 10. They include processors, memory chips, and

programmable logic devices.

- Very Large-scale Integration (VLSI): contains thousands of gates in a single package.

Examples are large memory arrays and complex microcomputer chips.

Basically, there are two types of semiconductor devices: bipolar and unipolar. Based on these

devices, digital integrated circuits have been made which are commercially available. Various

digital functions are being fabricated in a variety of forms using bipolar and unipolar technolo-

gies. A group of compatible ICs with the same logic levels and supply voltages for performing

various logic functions have been fabricated using a specific circuit configuration which is

referred to as a logic family.

The saturated bipolar logic families are:

 Resistor–transistor logic (RTL),
 Direct–coupled transistor logic (DCTL),
 Integrated–injection logic (I

2
L),

 Diode–transistor logic (DTL),
 High–threshold logic (HTL), and
 Transistor-transistor logic (TTL).

The non-saturated bipolar logic families are:

(1) Schottky TTL, and
(2) Emitter-coupled logic (ECL).

MOS devices are unipolar devices and only MOSFETs are employed in MOS logic circuits. The

MOS logic families are:
1. PMOS,
2. NMOS and CMOS

DSD UNIT 2 NOTES

CHARACTERISTICS OF DIGITAL ICs

IC Classification Equivalent individual Number of

 basic gates components

Small-scale integration (SSI) Less than 12 Up to 99

Medium-scale integration (MSI) 12–99 100–999

Large-scale integration (LSI) 100–999 1,000–9,999

Very large-scale integration (VLSI) Above 1,000 Above 10,000

The various characteristics of digital ICs used to compare their performances are:
1. Speed of operation,
2. Power dissipation,
3. Figure of merit,
4. Fan-out,
5. Current and voltage parameters,
6. Noise immunity,
7. Operating temperature range,
8. Power supply requirements, and
9. Flexibilities available.

Families of logic gates

There are several different families of logic gates. Each family has its capabilities and

limitations, its advantages and disadvantages. The following list describes the main logic

families and their characteristics. You can follow the links to see the circuit construction of

gates of each family.

- Diode Logic (DL)

Diode logic gates use diodes to perform AND and OR logic functions. Diodes have the

property of easily passing an electrical current in one direction, but not the other. Thus,

diodes can act as a logical switch.

Diode logic gates are very simple and inexpensive, and can be used effectively in specific

situations. However, they cannot be used extensively, as they tend to degrade digital

signals rapidly. In addition, they cannot perform a NOT function, so their usefulness is

quite limited.

DSD UNIT 2 NOTES

- Resistor-Transistor Logic (RTL)

Resistor-transistor logic gates use Transistors to combine multiple input signals, which

also amplify and invert the resulting combined signal. Often an additional transistor is

included to re-invert the output signal. This combination provides clean output signals and

either inversion or non-inversion as needed.

RTL gates are almost as simple as DL gates, and remain inexpensive. They also are handy

because both normal and inverted signals are often available. However, they do draw a

significant amount of current from the power supply for each gate. Another limitation is

that RTL gates cannot switch at the high speeds used by today's computers, although they

are still useful in slower applications.

Although they are not designed for linear operation, RTL integrated circuits are sometimes

used as inexpensive small- signal amplifiers, or as interface devices between linear and

digital circuits.

- Diode-Transistor Logic (DTL)

By letting diodes perform the logical AND or OR function and then amplifying the result with

a transistor, we can avoid some of the limitations of RTL. DTL takes diode logic gates and

adds a transistor to the output, in order to provide logic inversion and to restore the signal to

full logic levels.

- Transistor-Transistor Logic (TTL)

The physical construction of integrated circuits made it more effective to replace all the input

diodes in a DTL gate with a transistor, built with multiple emitters. The result is transistor-

transistor logic, which became the standard logic circuit in most applications for a number of

years.

As the state of the art improved, TTL integrated circuits were adapted slightly to handle a

wider range of requirements, but their basic functions remained the same. These devices

comprise the 7400 family of digital ICs.

- Emitter-Coupled Logic (ECL)

Also known as Current Mode Logic (CML), ECL gates are specifically designed to operate at

extremely high speeds, by avoiding the "lag" inherent when transistors are allowed to

DSD UNIT 2 NOTES

become saturated. Because of this, however, these gates demand substantial amounts of

electrical current to operate correctly.

- CMOS Logic

One factor is common to all of the logic families we have listed above: they use significant

amounts of electrical power. Many applications, especially portable, battery-powered ones,

require that the use of power be absolutely minimized. To accomplish this, the CMOS

(Complementary Metal-Oxide-Semiconductor) logic family was developed. This family

uses enhancement-mode MOSFETs as its transistors, and is so designed that it requires almost

no current to operate.

CMOS gates are, however, severely limited in their speed of operation. Nevertheless,

they are highly useful and effective in a wide range of battery-powered applications.

Most logic families share a common characteristic: their inputs require a certain amount of

current in order to operate correctly. CMOS gates work a bit differently, but still represent a

capacitance that must be charged or discharged when the input changes state. The current

required to drive any input must come from the output supplying the logic signal.

Therefore, we need to know how much current an input requires, and how much current an

output can reliably supply, in order to determine how many inputs may be connected to a

single output.

However, making such calculations can be tedious, and can bog down logic circuit design.

Therefore, we use a different technique. Rather than working constantly with actual

currents, we determine the amount of current required to drive one standard input, and

designate that as a standard load on any output. Now we can define the number of

standard loads a given output can drive, and identify it that way. Unfortunately, some inputs

for specialized circuits require more than the usual input current, and some gates, known as

buffers, are deliberately designed to be able to drive more inputs than usual. For an easy way

to define input current requirements and output drive capabilities, we define two new terms:

fan-in and fan-out

Fan-in

Fan-in is a term that defines the maximum number of digital inputs that a single logic gate

can accept. Most transistor- transistor logic (TTL) gates have one or two inputs, although

some have more than two. A typical logic gate has a fan- in of 1 or 2.

In some digital systems, it is necessary for a single TTL logic gate to drive several devices

DSD UNIT 2 NOTES

with fan-in numbers greater than 1. If the total number of inputs a transistor-transistor

logic (TTL) device must drive is greater than 10, a device called a buffer can be used

between the TTL gate output and the inputs of the devices it must drive. A logical inverter

(also called a NOT gate) can serve this function in most digital circuits.

Fan-out

Fan-out is a term that defines the maximum number of digital inputs that the output of a single

logic gate can feed. Most transistor-transistor logic (TTL) gates can feed up to 10 other

digital gates or devices. Thus, a typical TTL gate has a fan-out of 10.

In some digital systems, it is necessary for a single TTL logic gate to drive more than 10

other gates or devices. When this is the case, a device called a buffer can be used between

the TTL gate and the multiple devices it must drive. A buffer of this type has a fan-out of

25 to 30. A logical inverter (also called a NOT gate) can serve this function in most digital

circuits.

Remember, fan-in and fan-out apply directly only within a given logic family. If for any

reason you need to interface between two different logic families, be careful to note and

meet the drive requirements and limitations of both families, within the interface circuitry

	page3
	page7
	page9
	page11
	page13
	page15
	page17
	page19
	page21
	page23
	page25
	page27
	page29
	page31
	page33
	page35
	page37
	page39
	page41
	page43
	page45
	page47
	page49
	page51
	page53
	page55
	page57
	page59
	page61
	page63
	page65
	page67
	page69
	page71
	page73
	page75
	page77
	page79
	page81
	page83
	page85
	page87
	page89
	page91
	page95
	page97
	page99
	page101
	page103
	page105
	page107
	page109
	page111
	page113
	Families_of_logic_gates

